BEST BeuthStandardsCollection - Stand 2016-11

DIN EN 12163

ICS 77.150.30

Ersatz für DIN EN 12163:2011-08

Kupfer und Kupferlegierungen – Stangen zur allgemeinen Verwendung; Deutsche Fassung EN 12163:2016

Copper and copper alloys – Rod for general purposes; German version EN 12163:2016

Cuivre et alliages de cuivre – Barres pour usages généraux; Version allemande EN 12163:2016

Gesamtumfang 35 Seiten

DIN-Normenausschuss Nichteisenmetalle (FNNE)

Nationales Vorwort

Dieses Dokument (EN 12163:2016) wurde vom Technischen Komitee CEN/TC 133 "Kupfer und Kupferlegierungen" (Sekretariat: DIN, Deutschland) des Europäischen Komitees für Normung (CEN) erarbeitet.

Für die deutsche Mitarbeit ist der Arbeitsausschuss NA 066-02-04 AA "Strangpress- und Zieherzeugnisse" des DIN-Normenausschusses Nichteisenmetalle (FNNE) verantwortlich.

Änderungen

Gegenüber DIN EN 12163:2011-08 wurden folgende Änderungen vorgenommen:

- a) Einführung eines optionalen Verfahrens, wie auf Einschränkungen der chemischen Zusammensetzung zu verweisen ist, die durch die 4 MS Common Composition List für Werkstoffe, die für Produkte verwendet werden, die für den Kontakt mit Trinkwasser zugelassen sind, auferlegt werden;
- b) Anforderungen und Prüfverfahren für die Entzinkungsbeständigkeit modifiziert;
- c) Festlegungen zur Oberflächenqualität hinzugefügt;
- d) mechanische Eigenschaften für CuZn21Si3P (CW724R) modifiziert.

Frühere Ausgaben

DIN 1756: 1925-07, 1933-12, 1943-03, 1963x-07, 1969-07

DIN 1758: 1925-07, 1933-12, 1941-09

DIN 1761: 1925-07, 1939x-12, 1963x-07, 1969-07 DIN 1763: 1925-07, 1941-09, 1963x-07, 1969-07

DIN 1767: 1925-07, 1954-06

DIN 1773: 1927-07

DIN 1776: 1929-12, 1936-01, 1939-01, 1941-07 DIN 1782: 1929-12, 1935-01, 1963-07, 1969-07

DIN 1714: 1936x-02 DIN 17672: 1957-04

DIN 17672-1: 1961-08, 1969-02, 1974-06, 1983-12

DIN 17672-2: 1961-08, 1969-06, 1974-06

DIN EN 12163: 1998-04, 2011-08

EUROPÄISCHE NORM EUROPEAN STANDARD NORME EUROPÉENNE

EN 12163

Juli 2016

ICS 77.150.30

Ersatz für EN 12163:2011

Deutsche Fassung

Kupfer und Kupferlegierungen — Stangen zur allgemeinen Verwendung

Copper and copper alloys — Rod for general purposes Cuivre et alliages de cuivre — Barres pour usages généraux

Diese Europäische Norm wurde vom CEN am 9. April 2016 angenommen.

Die CEN-Mitglieder sind gehalten, die CEN/CENELEC-Geschäftsordnung zu erfüllen, in der die Bedingungen festgelegt sind, unter denen dieser Europäischen Norm ohne jede Änderung der Status einer nationalen Norm zu geben ist. Auf dem letzten Stand befindliche Listen dieser nationalen Normen mit ihren bibliographischen Angaben sind beim Management-Zentrum des CEN-CENELEC oder bei jedem CEN-Mitglied auf Anfrage erhältlich.

Diese Europäische Norm besteht in drei offiziellen Fassungen (Deutsch, Englisch, Französisch). Eine Fassung in einer anderen Sprache, die von einem CEN-Mitglied in eigener Verantwortung durch Übersetzung in seine Landessprache gemacht und dem Management-Zentrum mitgeteilt worden ist, hat den gleichen Status wie die offiziellen Fassungen.

CEN-Mitglieder sind die nationalen Normungsinstitute von Belgien, Bulgarien, Dänemark, Deutschland, der ehemaligen jugoslawischen Republik Mazedonien, Estland, Finnland, Frankreich, Griechenland, Irland, Island, Italien, Kroatien, Lettland, Litauen, Luxemburg, Malta, den Niederlanden, Norwegen, Österreich, Polen, Portugal, Rumänien, Schweden, der Schweiz, der Slowakei, Slowenien, Spanien, der Tschechischen Republik, der Türkei, Ungarn, dem Vereinigten Königreich und Zypern.

EUROPÄISCHES KOMITEE FÜR NORMUNG EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION

CEN-CENELEC Management-Zentrum: Avenue Marnix 17, B-1000 Brüssel

Inhalt

		Seite
Europ	äisches Vorwort	4
Einlei	tung	6
1	Anwendungsbereich	7
	Normative Verweisungen	
2	_	
3	Begriffe	7
4	Bezeichnungen	8
4.1	Werkstoff	
4.1.1	Allgemeines	
4.1.2	Werkstoffkurzzeichen	
4.1.3	Werkstoffnummer	
4.2	Zustand	
4.3	Produkt	
5	Bestellangaben	10
6	Anforderungen	
6.1	Zusammensetzung	
6.2	Mechanische Eigenschaften	
6.3	Entzinkungsbeständigkeit	
6.4	Höhe der Restspannungen	
6.5	Maße und Toleranzen	
6.5.1	Durchmesser oder Schlüsselweite	
6.5.2	Formtoleranzen	
6.5.3 6.5.4	GeradheitLänge	
6.5.4 6.5.5	Kantenradien	
6.5.6	Verwindung von Vielkantstangen	
6.6	Oberflächenqualität	
	•	
7 7.1	ProbenahmeAllgemeines	
7.1 7.2	Analyse	
7.2 7.3	Mechanische Prüfungen	
7.3 7.4	Prüfung auf Entzinkungsbeständigkeit und Spannungsrisskorrosionsbeständigkeit	
_	Prüfverfahren	
8 8.1	Analyse	
8.2	Zugversuch	
8.2.1	Allgemeines	
8.2.2	Lage der Proben	
8.2.3	Form und Maße der Proben	
8.2.4	Prüfverlauf	
8.2.5	Bestimmung der Ergebnisse	
8.3	Härteprüfung	
8.4	Prüfung auf Entzinkungsbeständigkeit	
8.5	Prüfung auf Spannungsrisskorrosionsbeständigkeit	
8.6	Bestimmung der elektrischen Leitfähigkeit	
8.7	Wiederholungsprüfungen	16
8.7.1	Analyse, Zugversuch, Härteprüfung, Prüfung der Entzinkungsbeständigkeit und	4.
072	Bestimmung der elektrischen Leitfähigkeit	
8.7.2 8.8	Prüfung auf SpannungsrisskorrosionsbeständigkeitRunden von Ergebnissen	
U.U	- Nunuch vun ei geumssen	10

9	Konformitätserklärung und Prüfbescheinigung	17
9.1	Konformitätserklärung	17
9.2	Prüfbescheinigung	17
10	Kennzeichnung, Verpackung, Etikettierung	17
Liter	raturhinweise	33
Bilde	er	
Bild	1 — Messung der Verwindung von Vielkantstangen	13
	ellen	10
	elle 1 — Zusammensetzung von niedriglegierten Kupferlegierungen	
	elle 2 — Zusammensetzung von Kupfer-Aluminium-Legierungen	
	elle 3 — Zusammensetzung von Kupfer-Nickel-Legierungen	
Tabe	elle 4 — Zusammensetzung von Kupfer-Nickel-Zink-Legierungen	19
Tabe	elle 5 — Zusammensetzung von Kupfer-Zinn-Legierungen	20
Tabe	elle 6 — Zusammensetzung von Kupfer-Zink-Legierungen	20
Tabe	elle 7 — Zusammensetzung von komplexen Kupfer-Zink-Legierungen	21
Tabe	elle 8 — Mechanische Eigenschaften von Stangen aus niedriglegierten Kupferlegierungen	22
Tabe	elle 9 — Mechanische Eigenschaften von Stangen aus Kupfer-Aluminium-Legierungen	24
Tabe	elle 10 — Mechanische Eigenschaften von Stangen aus Kupfer-Nickel-Legierungen	25
Tabe	elle 11 — Mechanische Eigenschaften von Stangen aus Kupfer-Nickel-Zink-Legierungen	26
Tabe	elle 12 — Mechanische Eigenschaften von Stangen aus Kupfer-Zinn-Legierungen	27
Tabe	elle 13 — Mechanische Eigenschaften von Stangen aus Kupfer-Zink-Legierungen	28
Tabe	elle 14 — Mechanische Eigenschaften von Stangen aus komplexen Kupfer-Zink-Legierungen	ı 30
Tabe	elle 15 — Grenzabmaße für Stangen	31
Tabe	elle 16 — Toleranzen für die Geradheit von Stangen	31
Tabe	elle 17 — Kantenradien für Vierkant- und Vielkantstangen	31
Tabe	elle 18 — Maximale Verwindung von Vierkant- und Vielkantstangen	32
Tabe	elle 19 — Probenanteil	32

Europäisches Vorwort

Dieses Dokument (EN 12163:2016) wurde vom Technischen Komitee CEN/TC 133 "Kupfer und Kupferlegierungen" erarbeitet, dessen Sekretariat vom DIN gehalten wird.

Diese Europäische Norm muss den Status einer nationalen Norm erhalten, entweder durch Veröffentlichung eines identischen Textes oder durch Anerkennung bis Januar 2017, und etwaige entgegenstehende nationale Normen müssen bis Januar 2017 zurückgezogen werden.

Es wird auf die Möglichkeit hingewiesen, dass einige Elemente dieses Dokuments Patentrechte berühren können. CEN sind nicht dafür verantwortlich, einige oder alle diesbezüglichen Patentrechte zu identifizieren.

Dieses Dokument ersetzt EN 12163:2011.

Im Rahmen seines Arbeitsprogrammes hat das Technische Komitee CEN/TC 133 CEN/TC 133/WG 4 "Strangpress- und Zieherzeugnisse, Schmiedestücke und Schrotte" ersucht, die folgende Norm zu überarbeiten:

— EN 12163:2011, Kupfer und Kupferlegierungen — Stangen zur allgemeinen Verwendung

Dieses Dokument ist eines aus einer Reihe von Europäischen Normen für die Produkte Stangen, Drähte, Profile und Schmiedestücke aus Kupfer und Kupferlegierungen. Andere Produkte sind wie folgt genormt:

- EN 12164, Kupfer und Kupferlegierungen Stangen für die spanende Bearbeitung;
- EN 12165, Kupfer und Kupferlegierungen Vormaterial für Schmiedestücke;
- EN 12166, Kupfer und Kupferlegierungen Drähte zur allgemeinen Verwendung;
- EN 12167, Kupfer und Kupferlegierungen Profile und Rechteckstangen zur allgemeinen Verwendung;
- EN 12168, Kupfer und Kupferlegierungen Hohlstangen für die spanende Bearbeitung;
- EN 13601, Kupfer und Kupferlegierungen Stangen und Drähte aus Kupfer für die allgemeine Anwendung in der Elektrotechnik;
- EN 13602, Kupfer und Kupferlegierungen Gezogener Runddraht aus Kupfer zur Herstellung elektrischer Leiter;
- EN 13605, Kupfer und Kupferlegierungen Profile und profilierte Drähte aus Kupfer für die Anwendung in der Elektrotechnik.

Im Vergleich mit EN 12163:2011 wurden die folgenden wesentlichen technischen Änderungen vorgenommen:

- a) Einführung eines optionalen Verfahrens, wie auf Einschränkungen der chemischen Zusammensetzung zu verweisen ist, die durch die 4 MS Common Composition List für Werkstoffe, die für Produkte verwendet werden, die für den Kontakt mit Trinkwasser zugelassen sind, auferlegt werden;
- b) Anforderungen und Prüfverfahren für die Entzinkungsbeständigkeit modifiziert;
- c) Festlegungen zur Oberflächenqualität hinzugefügt;
- d) mechanische Eigenschaften für CuZn21Si3P (CW724R) modifiziert.

Entsprechend der CEN-CENELEC-Geschäftsordnung sind die nationalen Normungsinstitute der folgenden Länder gehalten, diese Europäische Norm zu übernehmen: Belgien, Bulgarien, Dänemark, Deutschland, die ehemalige jugoslawische Republik Mazedonien, Estland, Finnland, Frankreich, Griechenland, Irland, Island, Italien, Kroatien, Lettland, Litauen, Luxemburg, Malta, Niederlande, Norwegen, Österreich, Polen, Portugal, Rumänien, Schweden, Schweiz, Slowakei, Slowenien, Spanien, Tschechische Republik, Türkei, Ungarn, Vereinigtes Königreich und Zypern.

Einleitung

Das Europäische Komitee für Normung (CEN) weist darauf hin, dass die Übereinstimmung mit diesem Dokument die Verwendung eines Patents hinsichtlich der Legierung CuZn21Si3P (CW724R) in 6.1 bedeuten kann.

CEN nimmt keine Stellung zum Nachweis, zur Gültigkeit und zum Anwendungsbereich dieser Patentrechte.

Der Halter dieser Patentrechte hat CEN zugesichert, dass er bereit ist, über Lizenzen entweder unentgeltlich oder zu vernünftigen und nicht diskriminierenden Geschäftsbedingungen mit Antragstellern in der ganzen Welt zu verhandeln. In diesem Zusammenhang ist die Erklärung des Halters dieser Patentrechte bei CEN registriert. Informationen können bezogen werden von:

Wieland Werke AG Graf-Arco-Straße 36 89079 Ulm DEUTSCHLAND

Es wird auf die Möglichkeit hingewiesen, dass einige Texte dieses Dokuments Patentrechte berühren können, ohne dass diese vorstehend identifiziert wurden. CEN ist nicht dafür verantwortlich, einige oder alle diesbezüglichen Patentrechte zu identifizieren.

CEN und CENELEC führen Online Listen von Patenten, die für deren Normen relevant sind. Anwender werden dazu ermutigt, diese Listen für die aktuellste Information zu den betroffenen Patenten zu konsultieren (ftp://ftp.cencenelec.eu/EN/IPR/Patents/IPRdeclaration.pdf).

Aufgrund der Weiterentwicklung der Gesetzgebung kann die Zusammensetzung des Werkstoffes auf die Zusammensetzung, die in dieser Europäischen Norm festgelegt ist, nach den individuellen Anwendungen (z. B. für die Verwendung im Kontakt mit Trinkwasser in einigen Mitgliedsstaaten der Europäischen Union) eingeschränkt sein. Diese individuellen Einschränkungen sind nicht Teil dieser Europäischen Norm. Dennoch sind diese Einschränkungen für Werkstoffe angegeben, bei denen traditionelle Anwendungen und Hauptanwendungen betroffen sind. Das Fehlen dieser Angabe bedeutet jedoch nicht, dass der Werkstoff in jeder Anwendung ohne irgendeine gesetzliche Einschränkung verwendet werden kann.

1 Anwendungsbereich

Diese Europäische Norm legt die Zusammensetzung, die Anforderungen an die Eigenschaften und die Grenzabmaße für durch Ziehen oder Pressen endgefertigte Stangen aus Kupferlegierungen in runder, quadratischer, sechseckiger oder achteckiger Form zur allgemeinen Verwendung fest.

Der Ablauf der Probenahme und die Prüfverfahren zur Feststellung der Übereinstimmung mit den Anforderungen dieser Norm sind ebenfalls festgelegt.

2 Normative Verweisungen

Die folgenden Dokumente, die in diesem Dokument teilweise oder als Ganzes zitiert werden, sind für die Anwendung dieses Dokuments erforderlich. Bei datierten Verweisungen gilt nur die in Bezug genommene Ausgabe. Bei undatierten Verweisungen gilt die letzte Ausgabe des in Bezug genommenen Dokuments (einschließlich aller Änderungen).

EN 1173, Kupfer und Kupferlegierungen — Zustandsbezeichnungen

EN 1412, Kupfer und Kupferlegierungen — Europäisches Werkstoffnummernsystem

EN 1655, Kupfer und Kupferlegierungen — Konformitätserklärungen

EN 10204, Metallische Erzeugnisse — Arten von Prüfbescheinigungen

EN 14977, Kupfer und Kupferlegierungen — Auffinden von Zugspannungen — 5 %-Ammoniakprüfung

EN ISO 6506-1, Metallische Werkstoffe — Härteprüfung nach Brinell — Teil 1: Prüfverfahren (ISO 6506-1)

EN ISO 6509-1, Korrosion von Metallen und Legierungen — Bestimmung der Entzinkungsbeständigkeit von Kupfer-Zink-Legierungen — Teil 1: Prüfverfahren (ISO 6509-1)

EN ISO 6892-1, Metallische Werkstoffe — Zugversuch — Teil 1: Prüfverfahren bei Raumtemperatur (ISO 6892-1)

ISO 1190-1, Copper and copper alloys — Code of designation — Part 1: Designation of materials

ISO 6957, Copper alloys — Ammonia test for stress corrosion resistance

3 Begriffe

Für die Anwendung dieses Dokuments gelten die folgenden Begriffe.

3.1

Stange

gerades Produkt mit einheitlichem Querschnitt über die ganze Länge

3.2

Unrundheit

Unterschied zwischen dem maximalen und minimalen Durchmesser, der an irgendeinem Querschnitt eines Produkts mit rundem Querschnitt gemessen wurde

4 Bezeichnungen

4.1 Werkstoff

4.1.1 Allgemeines

Der Werkstoff wird entweder durch ein Werkstoffkurzzeichen oder durch eine Werkstoffnummer bezeichnet (siehe Tabellen 1 bis 7).

4.1.2 Werkstoffkurzzeichen

Der Bezeichnung durch Werkstoffkurzzeichen liegt das in ISO 1190-1 enthaltene Bezeichnungssystem zugrunde.

ANMERKUNG Obwohl die Werkstoffkurzzeichen, die in dieser Norm verwendet werden, die gleichen sein können wie in anderen Normen, welche das Bezeichnungssystem nach ISO 1190-1 verwenden, sind die Anforderungen an die Zusammensetzung gleichbezeichneter Werkstoffe im Einzelnen nicht unbedingt gleich.

4.1.3 Werkstoffnummer

Die Werkstoffnummer entspricht dem in EN 1412 festgelegten System.

4.2 Zustand

Für die Anwendung dieser Norm gelten die nachstehenden Zustandsbezeichnungen; sie entsprechen dem in EN 1173 für den Zustand enthaltenen System:

- M Zustand für das Produkt "wie gefertigt" ohne festgelegte Anforderungen an die mechanischen Eigenschaften;
- R... Zustand, bezeichnet mit dem kleinsten Wert für die Anforderung an die Zugfestigkeit für das Produkt mit vorgeschriebenen Anforderungen an die im Zugversuch ermittelten Eigenschaften;
- H... Zustand, bezeichnet mit dem kleinsten Wert für die Anforderung an die Härte für das Produkt mit vorgeschriebenen Anforderungen an die Härte;

S (Suffix) Zustand für ein Produkt, das entspannt ist.

Produkte im Zustand M, R... oder H... dürfen speziell behandelt werden (d. h. mechanisch oder thermisch entspannt), um die Restspannungen zu verringern, damit die Spannungsrisskorrosionsbeständigkeit und die Formstabilität beim Bearbeiten (siehe Abschnitt 5 Listeneintrag I), Listeneintrag m) und 8.4) verbessert werden.

Eine genaue Umrechnung zwischen den Zuständen, bezeichnet mit R... und H..., ist nicht möglich.

Außer wenn das Suffix S verwendet wird, wird der Zustand nur durch einen der oben genannten Bezeichnungen bezeichnet.

4.3 Produkt

Die Produktbezeichnung stellt ein genormtes Bezeichnungsmodell dar, durch das in der Kommunikation eine schnelle und eindeutige Beschreibung eines Produktes übertragen werden kann. Das Modell ermöglicht ein gegenseitiges Verstehen auf internationaler Ebene hinsichtlich solcher Produkte, die die Anforderungen der betreffenden Europäischen Norm erfüllen.

Die Produktbezeichnung ist kein Ersatz für den vollen Inhalt der Norm.

Die Produktbezeichnung für Produkte nach dieser Norm muss bestehen aus:

- Benennung (Stange);
- Nummer dieser Europäischen Norm (EN 12163);
- Werkstoffbezeichnung, entweder Werkstoffkurzzeichen oder Werkstoffnummer (siehe Tabellen 1 bis 7);
- DW zur Übereinstimmung der chemischen Zusammensetzung nach der 4 MS Common Composition List.
 Diese Information ist im Fall eines Produktes verpflichtend, das für Trinkwasseranwendungen nach der 4 MS Common Composition List verwendet wird, und ist in anderen Fällen nicht anzugeben;
- Zustandsbezeichnung (siehe Tabellen 8 bis 14);
- Querschnittsform (die folgenden Bezeichnungen müssen entsprechend verwendet werden: RND für rund, SQR für quadratisch, HEX für sechseckig, OCT für achteckig);
- Nennquerschnittsmaße (Durchmesser oder Schlüsselweite);
- Toleranzklasse (siehe Tabelle 15);
- für Vielkantstangen, die Kantenausführung (die folgenden Bezeichnungen müssen entsprechend verwendet werden: SH für scharf, RD für abgerundet) (siehe Tabelle 17).

Die Herleitung einer Produktbezeichnung ist in folgenden Beispielen dargestellt.

BEISPIEL 1 Stange zur allgemeinen Verwendung in Übereinstimmung mit dieser Norm, Werkstoff entweder bezeichnet mit CuZn40 oder CW509L, für Standardanwendungen, im Zustand R410, sechseckig, Nennschlüsselweite 14 mm, Toleranzklasse B, abgerundete Kanten, wird wie folgt bezeichnet:

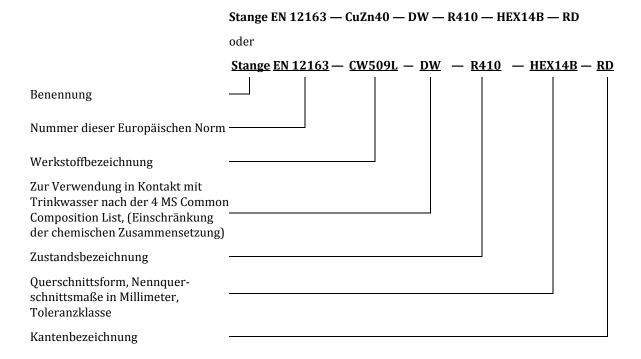
Stange EN 12163 — CuZn40 — R410 — HEX14B — RD

oder

Stange EN 12163 — CW509L — R410 — HEX14B — RD

Benennung

Nummer dieser Europäischen
Norm


Werkstoffbezeichnung

Zustandsbezeichnung

Querschnittsform, Nennquerschnittsmaße in Millimeter,
Toleranzklasse

Kantenbezeichnung

BEISPIEL 2 Stange zur allgemeinen Verwendung in Übereinstimmung mit dieser Norm, Werkstoff entweder bezeichnet mit CuZn40 oder CW509L, für Trinkwasseranwendungen nach der 4 MS Common Composition List, im Zustand R410, sechseckig, Nennschlüsselweite 14 mm, Toleranzklasse B, abgerundete Kanten, wird wie folgt bezeichnet:

5 Bestellangaben

Zur Erleichterung von Anfrage, Bestellung und Auftragsbestätigung im Bestellvorgang zwischen Käufer und Lieferant muss der Käufer in seiner Anfrage und Bestellung Folgendes angeben:

- a) Masse des verlangten Produktes;
- b) Benennung (Stange);
- c) Nummer dieser Europäischen Norm (EN 12163);
- d) Werkstoffbezeichnung (siehe Tabellen 1 bis 7);
- e) Zustandsbezeichnung (siehe 4.2 und Tabellen 8 bis 14), wenn sie nicht M ist;
- f) DW zur Übereinstimmung der chemischen Zusammensetzung nach der 4 MS Common Composition List. Diese Information ist im Fall eines Produktes verpflichtend, das für Trinkwasseranwendungen nach der 4 MS Common Composition List verwendet wird, und ist in anderen Fällen nicht anzugeben;
- g) Querschnittsform;
- h) Nennquerschnittsmaße (Durchmesser oder Schlüsselweite);
- ob andere Grenzabmaße als die der Klasse A verlangt werden (siehe Tabelle 15);
- j) bei Vielkantstangen: ob "scharfe" oder "abgerundete" Kanten erforderlich sind (siehe 6.5.5 und Tabelle 17), falls sie nicht dem Ermessen des Lieferanten überlassen werden müssen;
- k) Länge und Grenzabmaße für die Länge (siehe 6.5.4).

Es wird empfohlen, die Produktbezeichnung nach 4.3 für die Angaben zu b) bis k) zu verwenden.

Des Weiteren, falls gefordert, muss der Käufer in der Anfrage und im Auftrag Zusätzliches oder Folgendes angeben:

- l) ob es für die Produkte erforderlich ist, eine Prüfung auf Spannungsrisskorrosion zu bestehen. Wenn dies der Fall ist, welches Prüfverfahren verwendet werden muss (siehe 8.5), falls die Wahl nicht dem Ermessen des Lieferanten überlassen wird. Falls der Käufer ISO 6957 auswählt, muss der pH-Wert für die Prüflösung ausgewählt werden;
- m) ob die Produkte in einem thermisch entspannten Zustand geliefert werden müssen;
- n) ob eine besondere Oberflächenqualität gefordert ist (siehe 6.6);
- o) ob eine Konformitätserklärung gefordert ist (siehe 9.1);
- p) ob eine Prüfbescheinigung gefordert ist und, wenn dies der Fall ist, welcher Art (siehe 9.2);
- q) ob es besondere Anforderungen an die Kennzeichnung, Verpackung oder Etikettierung gibt (siehe Abschnitt 10).

BEISPIEL Bestellangaben für 500 kg Stangen zur allgemeinen Verwendung in Übereinstimmung mit EN 12163, Werkstoff entweder bezeichnet mit CuZn40 oder CW509L, für Trinkwasseranwendungen nach der 4 MS Common Composition List, im Zustand R410, sechseckig, Nennschlüsselweite $14 \, \text{mm}$, Toleranzklasse B, abgerundete Kanten, Länge $3 \, 000 \, \text{mm} \pm 100 \, \text{mm}$:

6 Anforderungen

6.1 Zusammensetzung

Die Zusammensetzung muss mit den Anforderungen für den entsprechenden Werkstoff in den Tabellen 1 bis 7 übereinstimmen.

Aufgrund der Weiterentwicklung der Gesetzgebung dürfen spezifische Anwendungen (siehe 4.3) Einschränkungen der chemischen Zusammensetzung fordern. In diesem Fall müssen die Einschränkungen in der Bestellangabe festgelegt sein (siehe Abschnitt 5, Listeneintrag f)).

6.2 Mechanische Eigenschaften

Die im Zugversuch ermittelten Eigenschaften oder Härteeigenschaften müssen mit den entsprechenden Anforderungen der Tabellen 8 bis 14 übereinstimmen. Die Prüfungen müssen nach 8.2 oder 8.3 durchgeführt werden.

6.3 Entzinkungsbeständigkeit

Die maximale Entzinkungstiefe von Produkten aus CuZn38As (CW511L) und CuZn21Si3P (CW724R) muss in jeder Richtung $100~\mu m$ betragen.

Die Prüfung muss nach 8.4 ausgeführt werden.

3EST BeuthStandardsCollection - Stand 2016-11

ANMERKUNG Form und Verteilung von Beta-Phasen-Aggregaten können die Entzinkungsbeständigkeit von Produkten beeinflussen. Besondere Anforderungen, die sich auf die Form und Verteilung von β -Phasen-Aggregaten beziehen, sind Teil der Vereinbarung zwischen Käufer und Lieferant.

Produkte aus der Legierung CuZn38As (CW511L) dürfen während der Herstellung einer Wärmebehandlung zwischen 500 °C bis 550 °C unterzogen werden. Wenn es der Benutzer für erforderlich hält, die Produkte bei der nachfolgenden Bearbeitung auf über 530 °C zu erhitzen, sollte der Lieferant zu Rate gezogen werden.

6.4 Höhe der Restspannungen

Produkte, die im entspannten Zustand bestellt und geliefert werden (siehe 4.2, zweiter Absatz), dürfen keine Anzeichen von Rissen aufweisen, wenn geprüft. Die Prüfungen müssen nach 8.5 durchgeführt werden.

6.5 Maße und Toleranzen

6.5.1 Durchmesser oder Schlüsselweite

Der Durchmesser oder die Schlüsselweite müssen mit den Grenzabmaßen nach Tabelle 15 übereinstimmen.

ANMERKUNG Der Durchmesser von Stangen mit rundem Querschnitt wird aus dem Mittel von einem oder mehreren Paaren von Messungen am selben Querschnitt der Stange errechnet. Die Messungen je Paar werden rechtwinklig zueinander durchgeführt.

6.5.2 Formtoleranzen

6.5.2.1 Rundstangen

Die Unrundheit darf die Hälfte des in Tabelle 15 angegebenen Bereichs der Grenzabmaße für den Durchmesser nicht überschreiten.

6.5.2.2 Vielkantstangen

Die in der Mitte der Seiten gemessenen Schlüsselweiten dürfen an irgendeinem Querschnitt die Hälfte des für die Maße in Tabelle 15 festgelegten Toleranzbereichs nicht überschreiten.

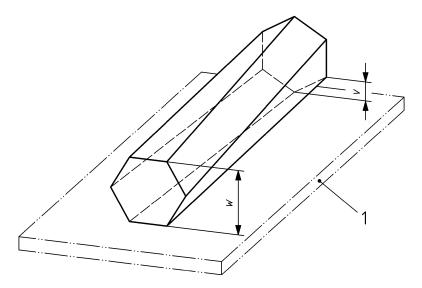
6.5.3 Geradheit

Bei Stangen mit einem Durchmesser oder einer Schlüsselweite von 10 mm bis 50 mm und einer Länge von 1 000 mm oder mehr muss die Abweichung von der Geradheit, die als Krümmung (Bogentiefe) gegen eine Grundlinie definiert ist, wenn das Produkt flach auf einer waagerechten Ebene liegt, mit den Toleranzen nach Tabelle 16 übereinstimmen.

ANMERKUNG Außerhalb dieses Bereichs ist die Abweichung von der Geradheit Gegenstand einer Vereinbarung zwischen Käufer und Lieferant.

6.5.4 Länge

Die Länge und die Grenzabmaße für die Länge müssen mit den in der Anfrage oder im Auftrag angegebenen Anforderungen (siehe Abschnitt 5, Listeneintrag k)) übereinstimmen.


6.5.5 Kantenradien

Die Kantenradien von Vielkantstangen müssen mit Tabelle 17 übereinstimmen [siehe Abschnitt 5, Listeneintrag j)].

Außer in Schiedsfällen sollten die Kantenradien direkt entweder mit einer Lehre oder mit Hilfe eines Lichtprojektors gemessen werden. In Schiedsfällen sollte das Verfahren mit dem Lichtprojektor angewendet werden.

6.5.6 Verwindung von Vielkantstangen

Die maximal zulässige Verwindung *V* (siehe Bild 1) von Vielkantstangen, gemessen zwischen zwei Querschnitten entlang einer Stange, muss mit Tabelle 18 übereinstimmen.

Legende

- 1 Bezugsebene
- V Verwindung
- W Schlüsselweite

Bild 1 — Messung der Verwindung von Vielkantstangen

6.6 Oberflächenqualität

Die Oberflächen müssen sauber und glatt sein. Die Stangen dürfen einen oberflächlichen Film aus Ziehöl oder, wenn geglüht oder thermisch entspannt, eine oberflächliche, matte, schillernde Oxidschicht haben, die sicher an der Oberfläche anhaftet.

Diskontinuierliche Unregelmäßigkeiten auf der Oberfläche der Stangen sind zulässig, wenn sie innerhalb der Maßtoleranzen sind.

Besondere Anforderungen (z. B. Beizen, Entfetten, usw.) bezogen auf die Oberflächenqualität müssen zwischen dem Käufer und dem Lieferanten vereinbart werden [siehe Abschnitt 5, Listeneintrag n)].

7 Probenahme

7.1 Allgemeines

Falls erforderlich (z. B. wenn sich entsprechende Maßnahmen aus den im Qualitätsmanagementsystem des Lieferanten festgelegten Arbeitsabläufen ergeben, oder wenn der Käufer Prüfbescheinigungen mit der Angabe von Prüfergebnissen fordert, oder zur Verwendung in Schiedsfällen) muss von einer Prüfeinheit eine Probenmenge nach 7.2 bis 7.4 entnommen werden.

Der Probenanteil muss den Festlegungen in Tabelle 19 entsprechen. Von jedem Probestück muss ein Probenabschnitt vorbereitet und zur Bestimmung der Zusammensetzung verwendet werden. Die Vorbereitung muss dem anzuwendenden Analyseverfahren entsprechen.

Bei der Vorbereitung des Probenabschnitts sollte darauf geachtet werden, dass eine Verunreinigung oder Überhitzung des Probenabschnitts vermieden wird. Die Verwendung hartmetallbestückter Werkzeuge wird empfohlen; Werkzeuge aus Stahl sollten aus magnetischen Werkstoffen bestehen, um nachfolgend die Beseitigung von Eisenpartikeln zu erleichtern. Falls die Probenabschnitte aus fein aufgeteilter Form bestehen, sollten die Späne (z. B. Bohrspäne, Frässpäne) vorsichtig mit einem starken Magneten behandelt werden, um Eisenpartikel, die bei der Probenvorbereitung eingeschleppt wurden, wieder aus den Spänen zu entfernen.

In Schiedsfällen betreffend die Ergebnisse von Analysen sollte die in ISO 1811-2 festgelegte Vorgehensweise vollständig befolgt werden.

Analyseergebnisse, die in einer früheren Stufe im Fertigungsablauf des Produktes, z.B. beim Gießen, ermittelt wurden, dürfen verwendet werden, wenn die Werkstoffidentität erhalten bleibt und der Hersteller über ein zertifiziertes Qualitätsmanagementsystem in Übereinstimmung mit z.B. EN ISO 9001 verfügt.

7.3 Mechanische Prüfungen

Der Probenanteil muss den Festlegungen in Tabelle 19 entsprechen. Die Probestücke müssen vom fertig hergestellten Produkt entnommen werden. Die Probenabschnitte müssen von den Probestücken entnommen werden. Die Probenabschnitte und die aus ihnen hergestellten Proben dürfen keiner weiteren Behandlung unterworfen werden, außer spanabhebenden Bearbeitungen, die für die Herstellung der Proben notwendig sind.

7.4 Prüfung auf Entzinkungsbeständigkeit und Spannungsrisskorrosionsbeständigkeit

Der Probenanteil, der vom fertig hergestellten Produkt entnommen werden muss, muss:

- bei wärmebehandelten Produkten ein Probestück je wärmebehandeltem Los betragen;
- bei nicht wärmebehandelten Produkten mit Tabelle 19 übereinstimmen.

Die Probenabschnitte müssen von den Probestücken entnommen werden. Die Probenabschnitte und die aus ihnen hergestellten Proben dürfen keiner weiteren Behandlung unterworfen werden, außer spanabhebenden Bearbeitungen, die für die Herstellung der Proben notwendig sind.

8 Prüfverfahren

8.1 Analyse

Die Analyse muss an den nach 7.2 aus Probenabschnitten erhaltenen Proben oder einer Prüfmenge durchgeführt werden. Außer in Schiedsfällen muss die Wahl des geeigneten Analyseverfahrens dem Lieferanten überlassen werden. In Schiedsfällen müssen die anzuwendenden Analyseverfahren zwischen den Beteiligten vereinbart werden. Für die Angabe von Messergebnissen müssen die Rundungsregeln nach 8.8 angewendet werden.

8.2 Zugversuch

8.2.1 Allgemeines

Proben für den Zugversuch müssen nach 8.2.2 und 8.2.3 hergestellt, und die Prüfung muss nach 8.2.4 durchgeführt werden.

BEST BeuthStandardsCollection - Stand 2016-11

8.2.2 Lage der Proben

Proben müssen aus den folgenden Stellen im Probenabschnitt, der nach 7.3 erhalten wurde, hergestellt werden:

- a) bei Probenabschnitten von Produkten mit einem Durchmesser oder einer Schlüsselweite bis 30 mm muss die Probe die gleiche Achse wie das Produkt haben;
- b) bei Probenabschnitten von Produkten mit einem Durchmesser oder einer Schlüsselweite über 30 mm muss die Längsachse der Probe parallel zur Achse des Produkts verlaufen und muss zwischen 15 mm und 20 mm von der Oberfläche des Produktes entfernt sein.

8.2.3 Form und Maße der Proben

Die Proben müssen EN ISO 6892-1 entsprechen, außer dass eine Messlänge von 200 mm nicht zulässig ist.

ANMERKUNG Anforderungen an die Bruchdehnung bei Stangen mit einem Durchmesser oder einer Schlüsselweite:

a) kleiner als 4 mm $(A_{100 \text{ mm}})$;

b) von 4 mm bis 8 mm $(A_{11,3})$;

c) größer als 8 mm (A);

basieren auf den ursprünglichen Messlängen von 100 mm, 11,3 $\sqrt{S_0}$ mm und 5,65 $\sqrt{S_0}$ mm wobei S_0 der ursprüngliche Querschnitt der Probe in Quadratmillimeter ist.

8.2.4 Prüfverlauf

Der Zugversuch muss in Übereinstimmung mit dem in EN ISO 6892-1 angegebenen Verfahren durchgeführt werden.

8.2.5 Bestimmung der Ergebnisse

Die Zugfestigkeit und die Bruchdehnung müssen anhand der Ergebnisse des Zugversuchs, die nach 8.2.4 erhalten wurden, bestimmt werden. Für die Angabe von Messergebnissen müssen die Rundungsregeln nach 8.8 angewendet werden.

8.3 Härteprüfung

Die Härte muss an einer Probe bestimmt werden, die aus einem nach 7.3 entnommenen Probenabschnitt vorbereitet wurde. Die Prüfung muss nach EN ISO 6506-1 durchgeführt werden.

Die Lage des Eindrucks muss sein:

- a) für Stangen mit einem Durchmesser oder Schlüsselweite kleiner als 5 mm nach Vereinbarung zwischen Käufer und Lieferant;
- b) für Stangen mit einem Durchmesser oder Schlüsselweite größer (gleich) als 5 mm auf dem Querschnitt des Produktes in der Mitte zwischen der Mittelachse und der Außenoberfläche.

8.4 Prüfung auf Entzinkungsbeständigkeit

Das Prüfverfahren nach EN ISO 6509-1 muss unter Verwendung von Proben, die aus Probenabschnitten nach 7.4 erhalten wurden, angewendet werden.

Jedem Probenabschnitt muss eine Probe entnommen werden. Eine vorbereitete Querschnittsoberfläche muss der Prüflösung ausgesetzt werden.

Nach Abschluss der Prüfung muss die maximale Entzinkungstiefe in Längsrichtung gemessen werden.

8.5 Prüfung auf Spannungsrisskorrosionsbeständigkeit

Das Prüfverfahren, entweder nach ISO 6957 oder nach EN 14977 muss an Proben, die aus Probenabschnitten nach 7.4 erhalten wurden, angewendet werden. Die Wahl, welches dieser Prüfverfahren angewendet wird, muss dem Lieferanten überlassen werden, wenn vom Käufer keine Angaben gemacht werden [siehe Abschnitt 5, Listeneintrag l)].

8.6 Bestimmung der elektrischen Leitfähigkeit

Falls nicht anders festgelegt, ist die Wahl des Prüfverfahrens dem Lieferanten zu überlassen, z.B. Wirbelstromverfahren oder Widerstandsbrücke.

8.7 Wiederholungsprüfungen

8.7.1 Analyse, Zugversuch, Härteprüfung, Prüfung der Entzinkungsbeständigkeit und Bestimmung der elektrischen Leitfähigkeit

Falls eine oder mehrere Prüfungen nach 8.1, 8.2, 8.3 oder 8.6 nicht bestanden werden, so muss zugelassen werden, dass zwei weitere Probenabschnitte der gleichen Prüfeinheit zur Wiederholungsprüfung der nicht bestandenen Prüfung(en) entnommen werden. Einer dieser Probenabschnitte muss demselben Teil entnommen werden, aus dem die Probe stammt, welche die Prüfung nicht bestanden hat, es sei denn, dass das betreffende Teil nicht mehr verfügbar ist oder vom Lieferanten schon ausgeschieden wurde.

Falls die Proben von beiden Probenabschnitten die Prüfung(en) bestehen, muss gelten, dass die in Frage gestellte Prüfeinheit die einzelne(n) Anforderung(en) nach dieser Norm erfüllt. Falls eine dieser Proben eine Prüfung nicht besteht, muss gelten, dass die in Frage gestellte Prüfeinheit die Anforderungen nach dieser Norm nicht erfüllt.

ANMERKUNG Wenn ein Prüflos der Legierung CuZn38As (CW511L) bei der Prüfung oder der Wiederholungsprüfung der Entzinkungsbeständigkeit nicht besteht, hat der Lieferant die Option, das Prüflos einer Wärmebehandlung oder einer weiteren Wärmebehandlung zu unterziehen und es erneut für alle Prüfungen, die in der Bestellung verlangt sind, außer für die Analyse, einzureichen.

8.7.2 Prüfung auf Spannungsrisskorrosionsbeständigkeit

Falls eine Probe die Prüfung in 8.5 nicht besteht, muss zugelassen werden, dass die Prüfeinheit, aus welcher die Probe stammt, einer weiteren Behandlung zum Abbau der Restspannungen unterzogen wird. Anschließend muss erneut ein Probenabschnitt nach 7.4 entnommen werden.

Falls eine Probe dieses weiteren Probenabschnitts die Prüfung besteht, muss gelten, dass das entspannte Produkt den Anforderungen nach dieser Norm an die Spannungsfreiheit genügt, aber das Produkt muss dann allen anderen im Auftrag geforderten Prüfungen erneut unterzogen werden, nicht jedoch der Analyse. Falls eine Probe eine Prüfung nicht besteht, muss gelten, dass das entspannte Produkt die Anforderungen dieser Norm nicht erfüllt.

8.8 Runden von Ergebnissen

Zum Nachweis der Einhaltung der Grenzwerte, die in dieser Norm festgelegt sind, muss ein bei einer Prüfung beobachteter oder errechneter Wert nach folgenden Verfahren auf der Grundlage der in EN ISO 80000-1 gegebenen Richtlinien gerundet werden. Der Wert muss in einem Schritt auf die gleiche Anzahl von Ziffern gerundet werden, mit der die Grenze in dieser Europäischen Norm festgelegt ist. Abweichend davon muss für die Zugfestigkeit und die 0,2 %-Dehngrenze ein Rundungsintervall von 10 N/mm² verwendet werden und bei der Dehnung muss der Wert auf das nächste 1 % gerundet werden.

Die folgenden Rundungsregeln müssen angewendet werden:

- a) falls die Ziffer unmittelbar nach der letzten beizubehaltenden Ziffer kleiner als 5 ist, muss die letzte beizubehaltende Ziffer unverändert bleiben;
- b) falls die Ziffer unmittelbar nach der letzten beizubehaltenden Ziffer gleich oder größer als 5 ist, muss die letzte beizubehaltende Ziffer um eins erhöht werden.

9 Konformitätserklärung und Prüfbescheinigung

9.1 Konformitätserklärung

Wenn vom Käufer verlangt [siehe Abschnitt 5, Listeneintrag o)] und dies mit dem Lieferanten vereinbart wurde, muss der Lieferant für die Produkte die entsprechende Konformitätserklärung nach EN 1655 abgeben.

9.2 Prüfbescheinigung

Wenn vom Käufer verlangt [(siehe Abschnitt 5, Listeneintrag p)] und dies mit dem Lieferanten vereinbart wurde, muss der Lieferant für die Produkte die entsprechende Prüfbescheinigung nach EN 10204 abgeben.

10 Kennzeichnung, Verpackung, Etikettierung

Kennzeichnung, Verpackung und Etikettierung müssen dem Lieferanten überlassen werden, falls vom Käufer nichts anderes festgelegt ist und mit dem Lieferanten vereinbart wurde [siehe Abschnitt 5, Listeneintrag q)].

Tabelle 1 — Zusammensetzung von niedriglegierten Kupferlegierungen

Werkstoffbez	eichnung								mense assenai	_							Dichte ^a g/cm ³		rische gkeit ^{a, b}
Kurzzeichen	Nummer	Element	Cu	Al	Be	Co	Cr	Fe	Mn	Ni	P	Pb	Si	Zn	Zr	Sonstige insgesamt	ungefähr	MS/m ungefähr	% IACS ungefähr
CuBe2	CW101C	min. max.	Rest —	_	1,8 2,1	— 0,3	_	— 0,2	_	— 0,3	_ _	_	_	_ _	_	— 0,5	8,3	15	26
CuCo1Ni1Be	CW103C	min. max.	Rest —	_	0,4 0,7	0,8 1,3	_	— 0,2	_	0,8 1,3	_	_	_	_	_	— 0,5	8,8	28	48
CuCo2Be	CW104C	min. max.	Rest —	_	0,4 0,7	2,0 2,8	_	— 0,2	_	— 0,3	_	_	_	_	_	— 0,5	8,8	25	43
CuCr1Zr	CW106C	min. max.	Rest —	_		_	0,5 1,2	— 0,08	_ _	_	_ _	_ _	 0,1		0,03 0,3	— 0,2	8,9	46	79
CuNi1Si	CW109C	min. max.	Rest —	_			_ _	— 0,2	 0,1	1,0 1,6	_	— 0,02	0,4 0,7	_	_ _	— 0,3	8,8	22	38
CuNi2Be	CW110C	min. max.	Rest —	_	0,2 0,6	— 0,3	_	— 0,2	_	1,4 2,4	_	_	_	_	_ _	— 0,5	8,8	38	65
CuNi2Si	CW111C	min. max.	Rest —	_		_	_ _	— 0,2	— 0,1	1,6 2,5	_	— 0,02	0,4 0,8		_ _	 0,3	8,8	20	34
CuZr	CW120C	min. max.	Rest —	_	_ _	_	_ _			_ _	_ _	_	_ _	_ _	0,1 0,2	— 0,1	8,9	50	86

a Nur zur Information.

b Nur für lösungsgeglühte und ausscheidungsgehärtete Zustände.

 ${\bf Tabelle~2-Zusammensetzung~von~Kupfer-Aluminium-Legierungen}$

Werkstoffbeze	eichnung							setzun anteil)	g				Dichte ^a g/cm ³
Kurzzeichen	Nummer	Element	Cu	Al	Fe	Mn	Ni	Pb	Si	Sn	Zn	Sonstige insgesamt	ungefähr
C Al1 0E-1	CMOOLC	min.	Rest	9,0	0,5	_	_	_	_	_	_	_	7.6
CuAl10Fe1	CW305G	max.	_	10,0	1,5	0,5	1,0	0,02	0,2	0,1	0,5	0,2	7,6
CuAl10Ni5Fe4	CW307G	min.	Rest	8,5	3,0	_	4,0	_	_	_	_	_	7.6
CUAITONISFE4	CW307G	max.		11,0	5,0	1,0	6,0	0,05	0,2	0,1	0,4	0,2	7,6
C., Al111E. (N; (CM300C	min.	Rest	10,5	5,0	_	5,0	_	_	_	_	_	7.4
CUAITTFebNib	Al11Fe6Ni6 CW308G			12,5	7,0	1,5	7,0	0,05	0,2	0,1	0,5	0,2	7,4
a Nur zur Inforn	nation.												

Tabelle 3 — Zusammensetzung von Kupfer-Nickel-Legierungen

Werkstoffbez	eichnung					7		nmen Iasser		0					Dichte ^a
Kurzzeichen	Nummer	Element	Cu	С	Со	Fe	Mn	Ni	P	Pb	S	Sn	Zn	Sonstige insgesamt	ungefähr
CuNi10Fe1Mn	CW352H	min. max.	Rest	— 0,05	 0,1 ^b	1,0 2,0	0,5 1,0	9,0 11,0	— 0,02	— 0,02	— 0,05	 0,03	— 0,5	— 0,2	8,9
CuNi30Mn1Fe	CW354H	min. max.	Rest	— 0,05	 0,1 ^b	0,4 1,0	0,5 1,5	30,0 32,0	 0,02	— 0,02	— 0,05	— 0,05	— 0,5	— 0,2	8,9

^a Nur zur Information.

Tabelle 4 — Zusammensetzung von Kupfer-Nickel-Zink-Legierungen

Werkstoffbe	zoichnung				Zusai	nmense	tzung				Dichte ^a
Werkstonbe	zeiciiiuiig				% (1	/lassenar	nteil)				g/cm ³
Kurzzeichen	Nummer	Element	Cu	Fe	Mn	Ni	Pb	Sn	Zn	Sonstige insgesamt	ungefähr
CuNi12Zn24	CW403I	min.	63,0	_	_	11,0	_	_	Rest	_	8,7
Culvi12ZiiZ4	CW403j	max.	66,0	0,3	0,5	13,0	0,03	0,03	_	0,2	0,7
CuNi18Zn20	CW409I	min.	60,0	_	_	17,0	_	_	Rest	_	8,7
Culvi1oZiiZu	CW409j	max.	63,0	0,3	0,5	19,0	0,03	0,03		0,2	0,7
^a Nur zur Infor	mation.										

b Co max. 0,1 % wird als Ni gezählt.

Tabelle 5 — Zusammensetzung von Kupfer-Zinn-Legierungen

Workstoffh	ezeichnung				Zusa	mmense	etzung				Dichtea
Werkstond	ezeichnung				% (Massenai	nteil)				g/cm ³
Kurzzeichen	Nummer	Element	Cu	Fe	Ni	P	Pb	Sn	Zn	Sonstige insgesamt	ungefähr
CuSn6	CW452K	min.	Rest		_	0,01	_	5,5	_	_	8,8
Cusho	CW432K	max.		0,1	0,2	0,4	0,02	7,0	0,2	0,2	0,0
CuSn8	CW453K	min.	Rest		_	0,01	_	7,5	_	_	8,8
Cusilo	CW433K	max.	_	0,1	0,2	0,4	0,02	8,5	0,2	0,2	0,0
C C O.D.	CMATOK	min.	Rest		_	0,2	_	7,5	_	_	0.0
CuSn8P	CW459K	max.	_	0,1	0,3	0,4	0,05	8,5	0,3	0,2	8,8
a Nur zur In	formation.										

Tabelle 6 — Zusammensetzung von Kupfer-Zink-Legierungen

Werkstoffbo	ezeichnung				Z	usamn % (Ma							Dichte ^a g/cm ³
Kurzzeichen	Nummer	Element	Cu	As	Al	Fe	Mn	Ni	Pb	Sn	Zn	Sonstige insgesamt	ungefähr
CuZn10	CW501L	min. max.	89,0 91,0	_	— 0,02	— 0,05	1 1	— 0,3	— 0,05	 0,1	Rest —	— 0,1	8,8
CuZn15	CW502L	min. max.	84,0 86,0	_ _	— 0,02	— 0,05	1 1	— 0,3	— 0,05	 0,1	Rest —	 0,1	8,8
CuZn20	CW503L	min. max.	79,0 81,0	_	— 0,02	 0,05	1 1	— 0,3	— 0,05	 0,1	Rest —	— 0,1	8,7
CuZn30	CW505L	min. max.	69,0 71,0	_	— 0,02	— 0,05	_	— 0,3	— 0,05	_ 0,1	Rest	 0,1	8,5
CuZn36	CW507L	min. max.	63,5 65,5	_	— 0,02	— 0,05	_	— 0,3	— 0,05	 0,1	Rest —	 0,1	8,4
CuZn37	CW508L	min. max.	62,0 64,0	_	— 0,05	 0,1	_	— 0,3	 0,1	 0,1	Rest —	 0,1	8,4
CuZn40	CW509L	min. max.	59,0 61,5	_	— 0,05	— 0,2	_	— 0,3	0,2	 0,2	Rest —	— 0,2	8,4
CuZn42	CW510L	min. max.	57,0 59,0	_ _	— 0,05	— 0,3	_ _	— 0,3	— 0,2	 0,3	Rest —	— 0,2	8,4
CuZn38As	CW511L	min. max.	61,5 63,5	0,02 0,15	— 0,05	— 0,1		— 0,3	— 0,2	 0,1	Rest —	— 0,2	8,4

^a Nur zur Information.

b Für Trinkwasseranwendungen können Einschränkungen der chemischen Zusammensetzung für einige in dieser Tabelle aufgelistete Werkstoffe nach nationalen Regelungen/Gesetzen gelten, z.B. wie in der 4 MS Common Composition List festgelegt.

Tabelle 7 — Zusammensetzung von komplexen Kupfer-Zink-Legierungen

Werkstoffbezeich	nung						Zusan	ımenset	zung ^b						Dichtea
Werkstonbezeich	inung						% (N	lassenan	teil)						g/cm ³
Kurzzeichen	Nummer	Element	Cu	Al	As	Fe	Mn	Ni	P	Pb	Si	Sn	Zn	Sonstige insgesamt	ungefähr
CuZn23Al6Mn4Fe3Pb	CW704R	min.	63,0	5,0	_	2,0	3,5	_	_	0,2	_	_	Rest	_	8,2
Cuziiz SAiomii 4re SPD	CW/04K	max.	65,0	6,0	_	3,5	5,0	0,5	_	0,8	0,2	0,2	_	0,2	0,2
Cu7n21Ci1	CW708R	min.	66,0	_	_	_	_		_	_	0,7	_	Rest	_	8,4
CuZn31Si1	CW/UOK	max.	70,0	_	_	0,4	_	0,5	_	0,8	1,3	_	_	0,5	0,4
CuZn35Ni3Mn2AlPb	CW710R	min.	58,0	0,3	_	_	1,5	2,0	_	0,2	_	_	Rest	_	8,3
Cuziissivisiviizairu	CW/IUK	max.	60,0	1,3	_	0,5	2,5	3,0	_	0,8	0,1	0,5	_	0,3	0,3
CuZn36Sn1Pb	CW712R	min.	61,0	_	_	_	_	_	_	0,2	_	1,0	Rest	_	8,3
Guzii303ii11 b	CW/12K	max.	63,0	_	_	0,1	_	0,2	_	0,6		1,5	_	0,2	0,3
CuZn39Sn1	CW719R	min.	59,0	_	_	_	_	_	_		_	0,5	Rest	_	8,4
Cuzii393ii1	CW/19K	max.	61,0	_	_	0,1	_	0,2	_	0,2		1,0	_	0,2	0,4
CuZn21Si3P	CW724R	min.	75,0	_	_	_	_	_	0,02	_	2,7	_	Rest	_	8,3
GUZIIZ I SISF	GW/Z4K	max.	77,0	0,05	_	0,3	0,05	0,2	0,10	0,10	3,5	0,3	_	0,2	0,3

a Nur zur Information.

b Für Trinkwasseranwendungen können Einschränkungen der chemischen Zusammensetzung für einige in dieser Tabelle aufgelistete Werkstoffe nach nationalen Regelungen/Gesetzen gelten, z. B. wie in der 4 MS Common Composition List festgelegt.

BEST BeuthStandardsCollection - Stand 2016-11

Tabelle 8 — Mechanische Eigenschaften von Stangen aus niedriglegierten Kupferlegierungen

Ве	zeichnungen		D	urchmes	ser	Scl	ılüssel	weite	Zugfestigkeit	0,2 %- Dehngrenze	Brue	chdehnı	ıng	Hä	rte
									$R_{ m m}$	$R_{\rm p,0,2}$	$A_{100 \text{ mm}}$	$A_{11,3}$	Α		
	Werkstoff			mm			mm		N/mm ² (MPa)	N/mm ² (MPa)	%	%	%	HE	BW
Kurzzeichen	Nummer	Zustand	von	über	bis	von	über	bis	min.	min.	min.	min.	min.	min.	max.
		M		Alle			Alle				Wie gefe	rtigt			
		R1150	_	25	80	_	25	80	1 150	1 000	_	_	2	_	_
CuBe2	CW101C	H340	_	25	80	_	25	80	_	_	_	_	_	340	410
		R1300	2		25	2	_	25	1 300	1 100	_	—	2	_	_
		H350	2	_	25	2	_	25	_	_		_	_	350	430
		M		Alle			Alle				Wie gefe	rtigt			
C. C. ANIAD	CM100C	R680	2	_	100	2	_	100	680	550	6	8	10	_	_
CuCo1Ni1Be CuCo2Be	CW103C CW104C	H220	2	_	100	2	_	100	_	_	_	_	_	220	270
Сисогъе	CW 104C	R730	2	_	60	2	_	60	730	610	4	6	8	_	_
		H230	2	_	60	2	_	60	_	_	_	_	_	230	310
		M		Alle			Alle				Wie gefe	rtigt			
		R370	_	50	100	_	25	100	370	250	_	_	16	_	_
		H120	_	50	100	_	25	100	_	_	_	_		120	160
CuCr1Zr	CW106C	R430		30	50	10	_	25	430	350	_	_	10	_	_
		H135		30	50	10	_	25	_	_	_	_		135	175
		R470	4	30		_	_	_	470	420	_	6	8	_	_
		H150	4	30		_	_	_	_	_	_	_		150	180
		M		Alle			Alle				Wie gefe	rtigt			
		R440	_	50	80		50	80	440	300	_	_	16		_
		H120	_	50	80	_	50	80	_	_	_	_	_	120	180
CuNi1Si	CW109C	R540	_	30	50	_	30	50	540	470	_	_	10		_
		H140	_	30	50		30	50	_	_	_	_		140	190
		R590	2		30	2	_	30	590	540	8	10	12		_
		H160	2	_	30	2	_	30	_	_	_	—	_	160	210
		M		Alle			Alle				Wie gefe	rtigt			
		R620	2	_	100	2	_	100	620	460	6	8	10	_	_
CuNi2Be	CW110C	H190	2	_	100	2	_	100	_	_	_	_	_	190	250
		R680	2		60	2	_	60	680	540	4	6	8		
		H210	2		60	2	_	60	_	_	_	_	_	210	260

Ве	zeichnungen		D	urchmes	ser	Sch	ılüssel	weite	Zugfestigkeit	0,2 %- Dehngrenze	Brue	chdehnı	ıng	Hä	rte
									$R_{ m m}$		$A_{100 \text{ mm}}$	$A_{11,3}$	\boldsymbol{A}		
	Werkstoff			mm			mm		N/mm ² (MPa)	N/mm ² (MPa)	%	%	%	HE	BW
Kurzzeichen	Nummer	Zustand	von	über	bis	von	über	bis	min.	min.	min.	min.	min.	min.	max.
		M		Alle			Alle				Wie gefe	rtigt			
		R550	20	_	80	20		80	550	430	_		15		_
		H150	20	_	80	20		80	_		_			150	190
CuNi2Si	CW111C	R600	20	_	50	20		50	600	520	_		10		_
		H165	20	_	50	20		50	_	1	_			165	210
		R640	2	_	30	2	_	30	640	590	6	8	10		_
		H180	2	_	30	2	_	30	_		_			180	230
		M		Alle			Alle				Wie gefe	rtigt			
		R250	_	50	80	_	50	80	250	170	_	_	20	_	_
		H075	_	50	80	_	50	80	_		_	_		75	115
CuZr	CW120C	R280	_	25	50	_	25	50	280	210	_	_	15	_	_
		H090	_	25	40	_	25	40	_	1	_			90	130
		R350	4	_	25	2	_	25	350	260	_	10	12	_	_
		H120	4		25	2	_	25	_		_			120	160
a Siehe 8.2.3.				·	·						·			·	

Tabelle 9 — Mechanische Eigenschaften von Stangen aus Kupfer-Aluminium-Legierungen

Bezeio	chnungen		Dı	urchmes	ser	Scl	hlüsselw	eite	Zugfestigkeit	0,2 %- Dehngrenze	Bruc	hdehnu	ng ^a	Hä	rte
									$R_{\rm m}$		$A_{100\;\mathrm{mm}}$	$A_{11,3}$	\boldsymbol{A}		
Werksto	off	Zustand		mm			mm		N/mm ² (MPa)	N/mm ² (MPa)	%	%	%	HE	3W
Kurzzeichen	Nummer		von	über	bis	von	über	bis	min.	min.	min.	min.	min.	min.	max.
		M		Alle			Alle				Wie gefer	tigt			
		R530	10	_	80	10	_	80	530	290	_	_	10	_	_
CuAl10Fe1	CW305G	H130	10	_	80	10	_	80	_	_	_		_	130	170
		R630	10	_	30	10	_	30	630	490	_		5	-	_
		H155	10		30	10	_	30	_				_	155	_
		M		Alle			Alle				Wie gefer	tigt			
		R680	10	_	120	10	—	120	680	320	_	_	10	_	_
CuAl10Ni5Fe4	CW307G	H170	10	_	120	10	—	120	_		_	_	_	170	210
		R740	10	_	80	10	_	80	740	400	_	_	8	_	_
		H200	10	_	80	10	_	80	_		_	_	_	200	_
		M		Alle			Alle				Wie gefer	tigt			
		R740	10	_	120	10	—	120	740	420	_	_	5	_	_
CuAl11Fe6Ni6	CW308G	H220	10	_	120	10	—	120	_	_	_	_	_	220	260
		R830	10		80	10	_	80	830	550		_	_		_
		H240	10		80	10	_	80	_	_	_		_	240	_
a Siehe 8.2.3.															

Tabelle 10 — Mechanische Eigenschaften von Stangen aus Kupfer-Nickel-Legierungen

Beze	eichnungen		Dι	ırchmes	ser	Schlüsselweite		Zugfestigkeit	0,2 %- Dehngrenze				Härte		
Werkst	off	Zustand		mm			mm		R _m N/mm ² (MPa)		A _{100 mm} %	<i>A</i> _{11,3} %	A %	HBW	
Kurzzeichen	Nummer		von	über	bis	von	über	bis	min.	min.	min.	min.	min.	min.	max.
		M		Alle			Alle				Wie gefert	igt			
		R280	10	_	80	10	_	80	280	90	_	_	30	_	_
CuNi10Fe1Mn	CW352H	H070	10	_	80	10	_	80	_		_	_		70	100
		R350	2	_	20	2	_	20	350	150	6	8	10	_	_
		H100	2	_	20	2	_	20						100	_
		M		Alle			Alle				Wie gefert	igt			
		R340	10		80	10		80	340	120	_	_	30	_	_
CuNi30Mn1Fe	CW354H	H080	10	_	80	10		80	_				1	80	110
		R420	2	_	20	2	_	20	420	180	10	12	14	_	_
		H110	2	_	20	2	_	20	_	_	_		_	110	_
a Siehe 8.2.3.															

BEST BeuthStandardsCollection - Stand 2016-11

Tabelle 11 — Mechanische Eigenschaften von Stangen aus Kupfer-Nickel-Zink-Legierungen

Bezeichnunge	zeichnungen		Durchmesser		Scł	Schlüsselweite		Zugfestig- keit	0,2 %- Dehngrenze		Bruchdehnung ^a			Härte		
Werkstoff		Zustand		mm			mm		R _m N/mm² (MPa)	R _{p (} N/m (MP	m^2	A _{100 mm} %	A _{11,3} %	A %	НЕ	W.
Kurzzeichen	Nummer		von	über	bis	von	über	bis	min.	min.	max.	min.	min.	min.	min.	max.
		M		Alle			Alle					Wie gefert	igt			
		R380	2	_	50	2	_	50	380	_	290	28	33	38		_
		H085	2	_	50	2	_	50	_	_		_		—	85	125
		R450	2	_	40	2	_	40	450	200	_	8	10	12	_	_
CuNi12Zn24	CW403J	H125	2	_	40	2	_	40	_	_	_	_	_	—	125	150
		R540	2	_	10	2	_	10	540	400	_	2	3	5	_	—
		H160	2	_	10	2	_	10	_	_	_	_	_	_	160	190
		R640	2	_	4	2	_	4	640	500	_	_	_		_	_
		H190	2	_	4	2	_	4	_	_	_	_	_	_	190	_
		M		Alle			Alle	1		1	1	Wie gefert	igt			
		R400	2	_	50	2	_	50	400	—	290	25	30	35	_	_
		H095	2	_	50	2	_	50	_	_		_		—	95	135
		R480	2	_	40	2	_	40	480	250	_	7	9	11	_	
CuNi18Zn20	CW409J	H140	2	_	40	2	_	40	_	_	_	_	_		140	175
		R580	2	_	10	2		10	580	400		_		_	_	
		H170	2	_	10	2	1	10	_	_	-	_		_	170	210
		R660	2	_	4	2	_	4	660	550	_	_	_	_	_	_
		H200	2	_	4	2	_	4	_	_	_	_	_	_	200	_
a Siehe 8.2.3.																

Tabelle 12 — Mechanische Eigenschaften von Stangen aus Kupfer-Zinn-Legierungen

Bezeichnungen			Durchmesser			Schlüsselweite		Zugfestig- keit	0,2 %- Dehngrenze		Bruchdehnung ^a			Härte		
Werkst	toff	Zustand		mm			mm		R _m N/mm ² (MPa)	N/r	0,2 nm ² Pa)	A _{100 mm} %	A _{11,3} %	A %	HE	BW
Kurzzeichen	Nummer		von	über	bis	von	über	bis	min.	min.	max.	min.	min.	min.	min.	max.
		M		Alle			Alle				•	Wie gefert	igt			
		R340	2	_	60	2	_	60	340	_	270	35	40	45	_	_
		H080	2	_	60	2	_	60	_	_	_	_	_	_	80	110
		R420	2	_	40	2		40	420	220	_	_	25	30	_	_
CuSn6	CW452K	H120	2	_	40	2		40	_	_	_	_	_	_	120	155
		R520	2	_	8	_	_	_	520	400	_	4	5	_	_	_
		H150	2	—	8		_	_	_	_	_	_	_	_	150	180
		R700	2	_	4	_	_	_	700	600	_	_	_	_	_	_
		H180	2	_	4	_	_	_	_		_	_	_	_	180	215
		M		Alle			Alle			1	1	Wie gefert				
		R390	2	_	60	2	_	60	390	_	280	35	40	45	_	_
		H085	2	_	60	2	_	60	_	_	_	_	_	_	85	125
		R450	2	—	50	2	_	50	450	280	_	18	22	26	_	_
CuSn8	CMATOK	H135	2	_	50	2	_	50	_	_	_	_	_	_	135	165
CuSn8P	CW453K CW459K	R550	2	_	12	2	_	12	550	400	_	10	12	15	_	_
Cushor	GW437K	H160	2	_	12	2	_	12	_	_	_	_	_	_	160	190
		R620	2	_	8	_	_	_	620	500	_	5	8	_		_
		H180	2	_	8	_	_	_			_	_	_	_	180	_
		R750	2	_	4	_	_	_	750	680	_	_	_	_		_
		H210	2	_	4		_		_		_	_	_	_	210	_

Tabelle 13 — Mechanische Eigenschaften von Stangen aus Kupfer-Zink-Legierungen

Be	zeichnungei	n	Du	rchmes	ser	Sch	lüsselwe	ite	Zugfestig- keit		2 %- grenze	Bruc	hdehnu	ng ^a	Hä	rte
									$R_{ m m}$	R	0,2	$A_{100~\mathrm{mm}}$	$A_{11,3}$	Α		
Werks	stoff	Zustand		mm			mm		N/mm² (MPa)	N/	mm² IPa)	%	%	%	HI	3W
Kurzzeichen	Nummer		von	über	bis	von	über	bis	min.	min.	max.	min.	min.	min.	min.	max.
		M		Alle			Alle					Wie gefe	rtigt			
		R240	4	_	80	4	_	80	240	_	150	_	40	45	_	_
		H050	4	_	80	4	_	80	_	_		_	_	_	50	95
CuZn10	CW501L	R320	4	_	40	4	_	40	320	220	_	_	23	25	_	_
		H090	4	_	40	4	_	40	_	_	_	_	_	_	90	120
		R380	4	_	10	4	_	10	380	280		_	11	12	_	_
		H110	4	_	10	4	_	10	_	_	_	_	_	_	110	150
		M		Alle			Alle					Wie gefe	rtigt			
		R260	4	_	80	4	_	80	260	_	170	_	40	45	_	_
		H060	4	_	80	4	_	80	_	_	_	_	_	_	60	115
CuZn15	CW502L	R340	4	_	40	4	_	40	340	200	_	_	20	22	_	_
		H100	4	_	40	4	_	40	_	_	_	_	_	_	100	130
		R430	4	_	10	4	_	10	430	350	_	_	8	10	_	_
		H130	4	_	10	4	_	10	_	_	_	_	_	_	130	170
		M		Alle			Alle					Wie gefe	rtigt			
		R260	4	_	80	4	_	80	260	_	170	_	40	45	_	_
		H065	4	_	80	4	_	80	_	_	_	_	_	_	65	100
CuZn20	CW503L	R360	4	_	40	4	_	40	360	210	_	_	18	20	_	_
		H100	4	_	40	4	_	40	_	_	_	_	_	_	100	130
		R450	4	_	10	4	_	8	450	300	_	_	6	7	_	_
		H130	4	_	10	4	_	8	_	_	_	_	_	_	130	190
		M		Alle			Alle					Wie gefe	rtigt			
		R280	4		80	4	_	80	280		250		40	45		
		H070	4	_	80	4	_	80	_	_	_	_	_	_	70	115
CuZn30	CW505L	R370	4	_	40	4	_	35	370	230	_	_	14	16	_	_
		H105	4	_	40	4	_	35	_	_	_	_	_	_	105	135
		R460	4	_	10	4	_	8	460	310	_	_	7	9	_	_
		H135	4	_	10	4	_	8	_	_	_	_	_	_	135	_

Tabelle 13 (fortgesetzt)

Bez	eichnunge	n	Du	rchmes	ser	Schlüsselweite			Zugfestig- keit	0,2 %- Dehngrenze		Bruc	hdehnu	ng ^a	Härte	
									R_{m}	R	0,2	$A_{100 \text{ mm}}$	$A_{11,3}$	Α		
Werkst	toff	Zustand		mm			mm		N/mm² (MPa)	N/	mm² IPa)	%	%	%	HI	ВW
Kurzzeichen	Nummer		von	über	bis	von	über	bis	min.	min.	max.	min.	min.	min.	min.	max.
		M		Alle			Alle					Wie gefei	rtigt			
		R290	4	_	80	4	_	80	290	_	230	_	40	45	_	_
CuZn36	CW507L	H070	4	_	80	4	_	80	_	_		_		_	70	110
CuZn36 CuZn37	CW507L CW508L	R370	4	_	40	4	_	35	370	240		_	12	14	_	_
GuZII37	CWJOOL	H105	4	_	40	4	_	35	_					_	105	145
		R460	4	_	8	4	_	6	460	330		_	6	8	_	_
		H140	4	_	8	4	_	6	_	_		_	1	_	140	_
		M		Alle			Alle					Wie gefei	rtigt			
		R360	6	_	80	5	_	60	360	_	300	_	15	20	_	_
		H070	6	_	80	5	_	60	_	_		_		_	70	100
CuZn40	CW509L	R410	2	_	40	2	_	35	410	230		8	10	12		_
		H100	2		40	2	_	35	_					_	100	145
		R500	2	_	14	2	_	10	500	350		3	5	8	_	_
		H120	2	_	14	2	_	10	_		_		_		120	_
		M		Alle			Alle					Wie gefei	rtigt			
		R360	6		80	5	_	60	360		320		15	20		_
		H090	6		80	5	_	60	_						90	125
CuZn42	CW510L	R430	2		40	2	_	35	430	220		6	8	10		_
		H110	2	_	40	2	_	35	_	_		_		_	110	160
		R500	2	_	14	2	_	10	500	350	_	_	3	5	_	_
		H135	2		14	2	_	10	_					_	135	_
		M		Alle			Alle					Wie gefei	rtigt			
		R280	6	_	80	5	_	60	280		200	_	25	30	_	_
		H070	6	_	80	5	_	60	_		1	_	1	_	70	110
CuZn38As	CW511L	R320	6	_	60	5	_	50	320	200		_	15	20	_	_
		H090	6	_	60	5	_	50	_	_		_	_	_	90	135
		R400	4	_	15	4	_	13	400	250	1	_	5	8	_	_
		H105	4	_	15	4	_	13	_	_		_		_	105	_
a Siehe 8.2.3.																

BEST BeuthStandardsCollection - Stand 2016-11

Tabelle 14 — Mechanische Eigenschaften von Stangen aus komplexen Kupfer-Zink-Legierungen

Bezeichn			Durchmesser		Schlüsselweite		Zugfestigkeit	0,2	2 %- grenze	Ū	hdehnu	ng ^a	Härte			
									$R_{\rm m}$		0,2	$A_{100 \text{ mm}}$	$A_{11,3}$	Α		
Werkstoff		Zustand		mm			mm		N/mm ² (MPa)	N/ı	mm ² [Pa]	%	%	%	НВ	SW
Werkstoff	Zustand		von	über	bis	von	über	bis	min.	min.	max.	min.	min.	min.	min.	max.
		M		Alle			Alle					Wie gefert	tigt			
CuZn23Al6Mn4Fe3Pb	CW704R	R780	10		80	10		60	780	540	_	_	_	8		_
		H190	10	_	80	10	_	60	_	_	_	_	_	_	190	_
		M		Alle			Alle					Wie gefert				
		R460	5	_	40	5	_	40	460	240	_	_	18	22	_	_
CuZn31Si1	CW708R	H120	5	_	40	5	_	40	_	_	_	_	_	_	120	160
		R530	5	_	14	5	_	14	530	350	_	_	10	12	_	_
		H140	5		14	5	_	14	_	_	_	_	_		140	_
		M		Alle	1		Alle				1	Wie gefert		1		T
CuZn35Ni3Mn2AlPb	CW710R	R490	5		40	5	_	40	490	290	_		15	18		
		H120	5		40	5		40	_	_	_		_	_	120	160
		M		Alle			Alle					Wie gefert			ı	1
0.5.060.451	ar= 4 a b	R340	5		60	5		60	340	160		_	20	25	_	_
CuZn36Sn1Pb	CW712R	H080	5		60	5	_	60	_	_		_	_	_	80	120
		R400	5		50	5	_	40	400	200	_	_	16	20	-	-
		H105	5	<u> </u>	50	5	<u> </u>	40	_		_		<u> </u>		105	135
		M	-	Alle	00	_	Alle	60	240	1.10		Wie gefert		20		1
		R340	5		80	5		60	340	140			15	20	_	- 120
0.7.000.4	CLUTTAOD	H080	5		80	5		60						<u> </u>	80	120
CuZn39Sn1	CW719R	R400 H105	5 5	_	50 50	5 5	_	40	400	180	_	_	10	15	— 105	145
		R450	5	_	25	5		20	<u> </u>	- 250	_	_	<u> </u>			145
		H120	5		25	5	_	20				_	3	10	<u> </u>	<u> </u>
		М М	3	Alle	43	3	— Alle	20	_		_	— Wie gefert	tigt		120	100
		R500	6	—	80	35	—	80	500		450	—	13	15		_
		H130	6		80	35		80			4 30				130	180
CuZn21Si3P	CW724R	R600	10		40	15		40	600	300				12		
Guziiz 10101	GW/L fit	H150	10		40	15		40		_	_		_		150	220
		R670	2		20	2		15	670	400	_	8	9	10		
		H170	2		20	2		15	— — — — — — — — — — — — — — — — — — —	_	_	_	_	_	170	_
^a Siehe 8.2.3.		ı				ı			•				ı		ı	

Tabelle 15 — Grenzabmaße für Stangen

Maße in Millimeter

Nenndurchmesser (oder Schlüsselweite	Grenzabmaße					
über	bis	Klasse A	Klasse B				
1,6ª	3	± 0,10	± 0,05				
3	6	± 0,15	± 0,08				
6	10	± 0,20	± 0,11				
10	18	± 0,25	± 0,14				
18	30	± 0,30	± 0,17				
30	50	± 0,60	± 0,20				
50	80	± 0,70	± 0,37				
^a Einschließlich 1,6.							

Tabelle 16 — Toleranzen für die Geradheit von Stangen

Nenndurchmesser	oder Schlüsselweite	Maximale Abweichung von der Geradheit (siehe 6.5.3)						
m	m	mm						
von	bis	Für jeden Längenabschnitt von 400 mm	Auf die Gesamtlänge L der Stange in Meter $(L \ge 1 \text{ m})$					
10	50	2,5	6 × L					

Tabelle 17 — Kantenradien für Vierkant- und Vielkantstangen

Maße in Millimeter

Nennsch	lüsselweite	Radien für scharfe und abgerundete Kanten					
		scharf	abgerundet				
über	bis	max.	Bereich				
1,6 ^a	3	0,2	0,2 bis 0,3				
3	6	0,3	0,3 bis 0,5				
6	10	0,4	0,4 bis 0,8				
10	18	0,5	0,5 bis 1,2				
18	30	0,6	0,6 bis 1,8				
30	50	0,7	0,7 bis 2,8				
50	60	0,8	0,8 bis 4,0				
^a Einschließlich 1,6.	•						

Tabelle 18 — Maximale Verwindung von Vierkant- und Vielkantstangen

Maße in Millimeter

Nennschlüs	sselweite W	Maximal zulässige Verwindung $\it V$
über	je 1 m Länge der Stange	
10 ^a	18	2,0
18	30	3,0
30	60	4,0
^a Einschließlich 10.		

Tabelle 19 — Probenanteil

	Nenndurchmesser (oder Schlüsselweite	Masse der Prüfeinheit
			für ein Probestück
	m	kg	
	über	bis	bis
	_	25	1 000
	25	2 000	
ANMERKUNG	Größere Mengen verlang	ximal drei Probenabschnitte.	

Literaturhinweise

- [1] EN ISO 9001, Qualitätsmanagementsysteme Anforderungen (ISO 9001)
- [2] ISO 1811-2, Copper and copper alloys Selection and preparation of samples for chemical analysis Part 2: Sampling of wrought products and castings
- [3] EN ISO 80000-1, Größen und Einheiten Teil 1: Allgemeines (ISO 80000-1)
- [4] "Acceptance for metallic materials used for products in contact with drinking water", 4 MS Common approach, Part B "4 MS Common Composition List" (http://www.umweltbundesamt.de/themen/wasser/trinkwasser/trinkwasser-verteilen/anerkennung-harmonisierung-4ms-initiative)